One-particle-thick, solvent-free, coarse-grained model for biological and biomimetic fluid membranes.

نویسندگان

  • Hongyan Yuan
  • Changjin Huang
  • Ju Li
  • George Lykotrafitis
  • Sulin Zhang
چکیده

Biological membranes are involved in numerous intriguing biophysical and biological cellular phenomena of different length scales, ranging from nanoscale raft formation, vesiculation, to microscale shape transformations. With extended length and time scales as compared to atomistic simulations, solvent-free coarse-grained membrane models have been exploited in mesoscopic membrane simulations. In this study, we present a one-particle-thick fluid membrane model, where each particle represents a cluster of lipid molecules. The model features an anisotropic interparticle pair potential with the interaction strength weighed by the relative particle orientations. With the anisotropic pair potential, particles can robustly self-assemble into fluid membranes with experimentally relevant bending rigidity. Despite its simple mathematical form, the model is highly tunable. Three potential parameters separately and effectively control diffusivity, bending rigidity, and spontaneous curvature of the model membrane. As demonstrated by selected examples, our model can naturally simulate dynamics of phase separation in multicomponent membranes and the topological change of fluid vesicles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

One-particle-thick, Solvent-free, Course-grained Model for Biological and Biomimetic Fluid Membranes

Biological membranes are involved in numerous intriguing biophysical and biological cellular phenomena of different length scales, ranging from nanoscale raft formation, vesiculation, to microscale shape transformations. With extended length and time scales as compared to atomistic simulations, solvent-free coarse-grained membrane models have been exploited in mesoscopic membrane simulations. I...

متن کامل

Particle-based membrane model for mesoscopic simulation of cellular dynamics.

We present a simple and computationally efficient coarse-grained and solvent-free model for simulating lipid bilayer membranes. In order to be used in concert with particle-based reaction-diffusion simulations, the model is purely based on interacting and reacting particles, each representing a coarse patch of a lipid monolayer. Particle interactions include nearest-neighbor bond-stretching and...

متن کامل

The Effect of Tethers on Artificial Cell Membranes: A Coarse-Grained Molecular Dynamics Study

Tethered bilayer lipid membranes (tBLMs) provide a stable platform for modeling the dynamics and order of biological membranes where the tethers mimic the cytoskeletal supports present in biological cell membranes. In this paper coarse-grained molecular dynamics (CGMD) is applied to study the effects of tethers on lipid membrane properties. Using results from the CGMD model and the overdamped F...

متن کامل

Dynamic implicit-solvent coarse-grained models of lipid bilayer membranes: fluctuating hydrodynamics thermostat.

We introduce a thermostat based on fluctuating hydrodynamics for dynamic simulations of implicit-solvent coarse-grained models of lipid bilayer membranes. We show our fluctuating hydrodynamics approach captures interesting correlations in the dynamics of lipid bilayer membranes that are missing in simulations performed using standard Langevin dynamics. Our momentum conserving thermostat account...

متن کامل

Key roles for chain flexibility in block copolymer membranes that contain pores or make tubes.

Block copolymer amphiphiles that self-assemble into membranes present robust and functionalizable alternatives to biological assemblies. Coarse-grained molecular dynamics shows that thick bilayers of A-B copolymers accommodate protein-like channels and also tend to regulate transport. This occurs as flexible, hydrophilic A chains insert into the pore and obstruct water entry. A-B-A triblocks th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 82 1 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2010